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Abstract

New X-ray crystallography and cryo-electron microscopy (cryo-EM)

approaches yield vast amounts of structural data from dynamic proteins and

their complexes. Modeling the full conformational ensemble can provide

important biological insights, but identifying and modeling an internally con-

sistent set of alternate conformations remains a formidable challenge. qFit effi-

ciently automates this process by generating a parsimonious multiconformer

model. We refactored qFit from a distributed application into software that

runs efficiently on a small server, desktop, or laptop. We describe the new qFit

3 software and provide some examples. qFit 3 is open-source under the MIT

license, and is available at https://github.com/ExcitedStates/qfit-3.0.
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1 | INTRODUCTION

Conformational dynamics play an essential role in many
aspects of protein function, including ligand binding,
allostery, and enzyme turnover.1,2 In each of these pro-
cesses, the protein does not adopt a single conformation,
but rather a conformational ensemble including a num-
ber of low-energy states. This ensemble can then be
redistributed or reshaped by small-molecule binding,
post-translational modifications, or other perturbations,
thereby controlling biological function. To fully under-
stand the fundamental interplay between protein confor-
mational heterogeneity and function, it is necessary to
develop experimental and computational techniques to
reveal alternative protein conformations in atomic detail.

X-ray crystallography is a powerful tool for addressing
this need. Because individual protein molecules in the
crystal lattice sample different conformations, there is a
growing appreciation that crystallographic electron den-
sity maps contain a wealth of information about sparsely
populated, alternative protein conformations.3 Moreover,
crystallography is undergoing an experimental renais-
sance: new tools are emerging with the potential to bias
conformational distributions in crystals and gain new
mechanistic insights into the links between protein
dynamics and function.

For example, crystallographic data sets collected
across multiple temperatures—as opposed to at a single
cryogenic temperature—often reveal ensembles with
more conformational diversity,4–8 including at dynamic
enzyme active sites.9 High-throughput crystallographic
protein:ligand screening can identify otherwise
undetectable low-occupancy ligand-bound protein
states.7,10,11 And time-resolved diffraction experiments,
triggered by a variety of stimuli,12–15 can offer detailed
windows into how protein conformational ensembles
evolve in real time. Time-resolved experiments are
becoming more accessible as serial microcrystallography
experiments can take place not only at X-ray free-
electron lasers with up to fs time resolution, but also at
third-generation synchrotrons with microfocus beamlines
with up to ms and perhaps even μs time resolution.16,17

Serial microcrystallography can also help reveal alterna-
tive protein states by dissecting distinct crystal poly-
morphs within the microcrystal population.18 These
advances, coupled with an ever-growing level of automa-
tion and faster X-ray detectors,19 are yielding larger
amounts of data that highlight the need for automated
(rather than manual) computational methods for model-
ing alternative conformations and their correlations in
electron density maps.

In parallel to the renaissance for X-ray crystallogra-
phy, cryo-electron microscopy (cryo-EM) is in the midst

of a “resolution revolution.”20 Recently, cryo-EM struc-
tures of apoferritin at “atomic resolution”
(1.2–1.25 Å)21,22 demonstrated how far this method has
come in recent years. Similar to electron density maps
from X-ray crystallography, Coulomb potential maps
from cryo-EM reveal evidence for alternative protein
states, which in this case are sampled by individual pro-
tein molecules on the microscopy grid. Unfortunately, so
far no methods exist for unbiased and automatic model-
ing of correlated alternative conformations in cryo-EM
maps. Additionally, many cryo-EM structures feature
large protein complexes with thousands of amino acids,
posing a significant challenge to traditional model build-
ing approaches. Efficient, automated algorithms23 could
meet this challenge for cryo-EM.

There is thus a clear need for computational model-
building methods that better explain X-ray and cryo-EM
data by incorporating alternative conformations. Protein
conformational heterogeneity can be represented using
various approaches, including B-factors, multi-copy
ensembles, or multiconformer models.1 First, B-factors
are present for every atom in the Protein Data Bank
(PDB)24 file format. Theoretically, B-factors represent the
harmonic, thermal displacement of each atom about its
mean position, either isotropically with one parameter or
anisotropically with six parameters.25 However, in prac-
tice, B-factors often absorb uncertainty in a more general
sense about each atom's position, and are insufficient
representations of anharmonic motions such as transi-
tions between side-chain rotamers.26 Second, multi-copy
ensemble models consist of some number (>1) of full
copies of the protein with distinct xyz coordinates and B-
factors that collectively explain the experimental data.27

Ensemble models can successfully describe discrete con-
formational heterogeneity such as rotamer transitions—
but they unnecessarily inflate the number of model
parameters for those regions of the protein with essen-
tially a single, unique conformation.28 Finally, multi-
conformer models, such as those generated by qFit, lie
somewhere in the middle in terms of model complexity.
A multiconformer model represents local, anharmonic
features in the data with a small number (2–5) of discrete
conformations, but represents regions of the protein that
show little to no evidence of flexibility with a single con-
formation. These conformations are assigned labels
(“alternative locations” or “altlocs”), such as A, B, and so
forth, with corresponding occupancies in the PDB format
on a per-atom basis. Groups of atoms whose alternate
positions are correlated (side chains, stretches of contigu-
ous backbone, collective exchange across an active site,
etc.) are assigned the same label and occupancy. When
constructed in a parsimonious manner, multiconformer
models can limit a model's complexity while maximizing
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its explanatory power. Algorithms such as Ringer3 can
identify amino acids with putative alternative conforma-
tions, but do not perform model building.

To efficiently generate parsimonious multiconformer
models for protein X-ray crystal structures, we previously
introduced the software package qFit.29 Besides providing
mechanistic insights, for example, by revealing hidden
protein contact signaling networks30 and allosteric
pathways,7 multiconformer qFit models have also
established that the conformational ensemble at room
temperature is not dominated by radiation damage,31 and
that the effect of crystal dehydration on the conforma-
tional ensemble is similar to that of cryocooling.32 We
recently introduced multiconformer treatment of ligands
in complex with proteins in a standalone version, qFit-
ligand.33 However, previous versions of qFit were compu-
tationally demanding (requiring a high-performance
computing cluster), and were restricted to density maps
from X-ray crystallography only, among other
limitations.

Here we report a new, refactored version of qFit,
which we call qFit 3, with several key improvements.
qFit 3 operates on maps from either X-ray crystallogra-
phy or cryo-EM. It combines multiconformer modeling
of proteins and of ligands complexed with proteins (from
qFit-ligand) in a single software package written in
Python. The software distribution includes a script to
refine the multiconformer model generated by qFit with
Phenix.34 Importantly, we reduced the runtime by two
orders of magnitude compared with qFit 2. The gains in
efficiency are largely due to removing redundancies, for
example by pre-computing maps, parallelizing the code
wherever possible, and reducing the number of Phenix
refinement applications prior to qFit modeling. The Rfree

values are largely unaffected by these changes (Figure S4),
exemplified by the qFit 3 model of peptidyl-prolyl cis-
trans isomerase CypA in the results section below which
has an Rfree of 0.1515 compared with 0.1520 with qFit 2.6

qFit 3 typically runs for a �300 residue protein in several
hours on a laptop, making it significantly more accessible
to users.

Overall, qFit 3 reveals hidden alternative conforma-
tions in protein structures in a rapid, automated, and
unbiased manner. This new software will allow a broader
array of users to explore conformational heterogeneity in
their systems of interest. It will also smooth the path
toward integrating new and exciting types of structural
biology data, including series of data sets related by tem-
perature, ligands, or time, as well as biologically impor-
tant and/or large protein systems from X-ray free
electron lasers (XFELs) or cryo-EM. qFit 3 will thus
empower novel studies of the relationship between pro-
tein dynamics and biological function.

2 | RESULTS

qFit was completely refactored in the Python program-
ming language and released as open-source software; see
Methods and the GitHub repository (https://github.com/
ExcitedStates/qfit-3.0) for more details. A typical qFit
3 workflow is illustrated in Figure 1. qFit 3 takes as mini-
mal input a starting model and either a real-space map in
the MRC/CCP4 format or map coefficients in the MTZ
format. For X-ray crystallography, the preferred map is a
composite omit map to minimize model bias, which can
be readily generated with Phenix. For cryo-EM, the input
is a real-space map together with the resolution of the
data and a flag to use electron scattering factors for gen-
erating synthetic densities. qFit 3 relies on a sample-and-
select procedure based on constrained optimization to
identify alternative conformations of proteins and their
ligands. To ensure optimal model selection and prevent
overfitting, qFit 3 evaluates increasing model complexi-
ties, selecting the model with the lowest Bayesian Infor-
mation Criterion (BIC). qFit 3 now also provides all
functionality to model ligand alternate conformations,
previously available separately in qFit-ligand. A distinctly
important new feature is qFit 3's capability to model
alternate conformations into cryo-EM maps. Numerous
additional options and details are described in the
Methods section and can be found in the qFit 3 GitHub
repository. Descriptions and default values for all avail-
able options can be seen in the—help text of each pro-
gram. Here, we demonstrate typical use cases of qFit for
protein systems and their ligands. All analyses in this
section used default parameters, unless otherwise stated.

2.1 | X-ray diffraction data

We first carried out qFit 3 modeling on a previously
deposited cryogenic X-ray structure of a protein tyrosine
phosphatase, PTPN18 (PDB ID: 2oc3).35 While the
deposited model includes 10 residues with alternate
conformers, a difference density map shows unmodeled
positive density over 3σ around Phe30 and Gln34
(Figure 2a, left panel). qFit 3 models suggest that an
alternate conformer for Phe30 and an ensemble of three
side-chain conformers for Gln34 better fit the density,
and reduce nearby difference density peaks (Figure 2a,
right panel). Running on a quad-core processor, qFit
sampled and selected alternative conformations for this
290-residue protein in 12.75 hr. While runtime depends
on n_processors, as well as the size, resolution, and ter-
tiary structure of the model, around 10 CPU-minutes
per residue can be expected for a 1.5 Å structure of
this size.
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The default algorithm of qFit 3 changed slightly com-
pared with earlier versions. Previously, each amino acid
in turn was truncated at the Cβ atom and refined aniso-
tropically. This had two advantages: (a) it generally posi-
tioned the Cβ atom at the peak average density of
potential alternate conformations, and (b) the anisotropy
of the atomic displacement parameter provided guidance
for backbone motions. Although this earlier version often
better captured subtle backbone movements, it led to sig-
nificant increased computational expense and complex-
ity.36 Nonetheless, the present version of qFit can be
made to mimic the behavior of the earlier algorithm on a

single residue by providing an alternative input. A previ-
ously studied room-temperature structure of the peptidyl-
prolyl cis-trans isomerase CypA (PDB ID: 3k0n) displays
multiple conformers for Phe113.9 Starting from a single
conformer (Figure 2b, left panel), we truncated Phe113 at
Cβ, refined the structure anisotropically, calculated a
composite omit map, and used this as input to qFit 3 with
default parameters. This preprocessing enabled qFit to
recapitulate the alternative conformations observed in
the published model (Figure 2b, right panel). With
Phe113 in place, qFit 3 ran in 460 min over the other
161 residues. This computationally expensive
preprocessing procedure is provided as an option (-phe-
nix-per-residue-aniso), and improved backbone modeling
will be a focus of future development (Discussion).

2.2 | Cryo-EM data

qFit 3, for the first time, also accepts cryo-EM density
maps as input. We have adopted the simplified scattering
factor calculation of averaging the contributions of all
atoms to calculate synthetic maps, as is used in real-space
refinement in Phenix.37 As an example application of this
new functionality, we ran qFit 3 on two ultra-high-
resolution cryo-EM structures: β3 GABA receptor22

(1.2 Å resolution) and apoferritin21 (1.7 Å resolution).
qFit 3 was run on both chain A and the entire structure
for both examples. Chain A of apoferritin (176 residues)
had a runtime of 112 minutes using four cores.

For these examples, qFit 3 captured both previously
modeled and newly modeled alternative conformations
(Figure 3). Within chain A, there were originally 19 resi-
dues with modeled alternative conformers. qFit 3 success-
fully identified alternate conformations for 16 (84.2%) of
these residues and suggested 66 additional residues with
alternative conformations. In Figure 3a, we demonstrate
the ability of qFit 3 to recapitulate alternative conformers
in Ser124. In Figure 3b, we demonstrate the ability of qFit
3 to detect a new alternative rotamer for Gln14 (mm-40
and pt20,26 RMSF 1.16 Å).

2.3 | Alternative conformations of
ligands

Additionally, qFit 3 can determine alternative conforma-
tions of ligands.33 Distinct ligand conformations can play
an important role in determining binding affinities, activ-
ity, and disassociation from the protein. Visualizing
ligand alternate conformations can help determine the
role of entropy in binding affinity, or help guide lead
optimization in drug discovery.38–40 qFit-ligand takes a
model, map, and information about the position of the

FIGURE 1 Usage flowchart for qFit 3 for either protein or

ligand inputs and for either X-ray or cryo-EM data. (1) qFit requires

an initial model and map information. In the case of X-ray

diffraction data, qFit will require both the structure factors and a

high-quality, unbiased map, such as a composite omit map.

(2) With these files, qFit will generate a parsimonious model

(multiconformer_model2.pdb) containing the fewest number of

sampled conformers that explain the experimental data. (3) This

intermediate/preliminary model should proceed through an

iterative procedure to refine the occupancies of conformers in the

model, and cull those conformers that have <9% occupancy.

(4) The resulting model can then be used to explore conformational

diversity. See Figures S1 and S2 for more detail on usage for X-ray

versus cryo-EM data
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ligand of interest (chain and residue number). The output
is a set of conformations of the ligand. In Figure 4, we
show two examples of ligands taking on multiple confor-
mations to two different proteins, CDK241 and Human
Leukotriene A4 Hydrolase.42

3 | DISCUSSION

qFit 3 is a significantly faster implementation of the qFit
algorithm that can now run on commodity computer

hardware like a laptop. It is open-source and freely avail-
able, with simple installation instructions. qFit 3's speed
enables application of the qFit approach to series of mul-
tiple data sets generated by new high-throughput
methods in crystallography; to large, increasingly high-
resolution cryo-EM structures with many thousands of
amino acids; and to many more structural bioinformatics
studies that focus on conformational heterogeneity.

qFit 3 can help users generate novel hypotheses about
connections between conformational heterogeneity and
function in protein or protein:ligand systems of interest.

FIGURE 2 qFit 3 recapitulates deposited alternate conformations in X-ray crystallography density maps, and suggests additional

conformations to explain unmodeled density. (a) Left: PTPN18 (PDB ID: 2oc3) displays regions of unmodeled density near Phe30 and Gln34

in the deposited mFo-DFc difference density map at +3σ (green cloud). These are visible in a 2mFo-DFc composite omit density map

contoured at 1σ (blue mesh), which is clarified by a low-density 0.5σ contour (blue cloud). Right: qFit 3 adds extra conformers to model these

residues. Gln34 is modeled by three conformers (corresponding to the rotamers mm110, mt0, mt026); Phe30 is also modeled by two

conformers (both in the “favored” t80 rotamer space). The distance between Phe30 and Gln34 does not lead to steric hindrance between any

of the conformers of either residue. Note that qFit 3 sets the minimum number of conformers in Ile33 to three (because of Gln34) to ensure

backbone consistency; Phe30 is part of another backbone segment. (b) Left: Following the methodology in qFit 2,36 Phe113 was truncated at

Cβ and refined. Both the composite omit map and the difference map indicated the presence of at least two conformers for this residue.

Right: qFit 3 sampled and selected two conformers of Phe113 (matching the two known ones) to explain the density in the composite

omit map
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It readily identifies alternative protein conformations,
including transitions between side-chain rotamers or
even within rotameric energy wells.26 Because it com-
bines side-chain and backbone sampling, qFit often
models side-chain transitions that are coupled to local
backbone motions, including implicitly captured
backrub-like motions.43 In many cases, alternative con-
formations scattered throughout the protein can interact
with one another, forming coupled networks44 that may
have the capacity for allosteric transmission.6,7 Due to
the simulated-annealing labeling protocol in qFit, alter-
native conformation labels (A, B, etc.) are consistent for
flexible regions that are adjacent in the tertiary structure,
and thus may be used to infer possible energetic coupling
between nearby conformations; however, the relation-
ships between these labels for flexible regions that are
separated from one another by nonflexible regions are
essentially arbitrary. For protein:ligand systems, qFit can
be used to contrast protein conformational heterogeneity

in the apo versus liganded states to gain mechanistic
insights into pocket formation and binding. Further, qFit
can identify undetected, sparsely populated secondary
ligand binding poses within the same pocket, opening
doors to rational structure-based ligand design to stabilize
poses and to exploring the role of conformational entropy
in binding thermodynamics. The alternative conforma-
tions typically visualized by qFit are often relatively local
in nature, as opposed to larger-scale motions involving
for example, rotations between domains, in large part
because the protein is constrained by the crystal lattice.
However, functional protein motions are observed within
crystals,9,45 and thus the shifts identified by qFit can be
quite relevant to functional interpretations.

Although qFit 3 can be run in an automated fashion
on large (numbers of) structures, the user should apply
caution in interpreting its multiconformer models. False
positives can occur when qFit 3 selects spurious alterna-
tive protein conformations based on density that

FIGURE 3 qFit 3 recapitulates deposited alternate conformations in cryo-EM density maps, and suggests alternate conformations to

explain noisy data. (a) Left: Deposited alternative conformations for Ser113 in a high-resolution published cryo-EM structure of apoferritin

(PDB ID: 6v21). These are visible in a 2mFo-DFc composite omit density map contoured at 1σ (dark blue cloud) and at 0.5σ (light blue cloud

and blue mesh). Right: qFit 3 and subsequent refinement successfully modeled identical alternative conformations. Occupancies are

indicated in italics. (b) Left: Deposited single conformation for Gln14 in the same structure of apoferritin. Right: qFit 3 and subsequent

refinement identifies the original conformer, plus an alternative conformer (mm-40 and pt20 rotamers26)
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corresponds to other atoms such as water molecules.
False negatives can occur when qFit 3 fails to sample
backbone conformational space sufficiently. Develop-
ment of qFit is ongoing and the user community is
invited to contribute to the open-source project at
https://github.com/ExcitedStates/qfit-3.0.

To improve qFit further, we envision several new
developments. For example, qFit's backbone sampling
methodology has ample room for improvement. Currently
in qFit, each amino acid's backbone is translated along the
principal axes of the anisotropic ellipsoid of the Cß atom
(or O for Gly), while closure of the backbone is maintained
by torsion-based nullspace inverse kinematics (Methods),
thus positioning it to accommodate suitable alternative
side-chain rotamers (Methods). Although this current
backbone sampling is powerful for capturing small-scale
motions, it is limited in its ability to capture larger ones
(Figure 2b). A suite of backbone sampling methods in qFit,
ranging from explicit backrubs43 and helix “shear”46,47 to
inverse-kinematics-based loop modeling,48 would be able
to overcome this limitation. These new methods will allow
qFit to model alternative conformations that are related to
each other by larger, biologically relevant motions that
occur in crystals, as with loops in protein tyrosine phos-
phatase 1B (PTP1B)7 and helices in isocyanide hydratase
(ICH).15 A related challenge is that hierarchical alternative

conformations—such as alternative loop or helix backbone
positions that each have alternative side-chain rotamers—
are not supported in the existing PDB format. It may be
possible to use additional restraints to bypass this limita-
tion. For example, PanDDA helps users create a (poten-
tially multiconfomer) model of the bound state of a
protein:ligand crystal system, which can then be combined
with a (potentially multiconfomer) model of the unbound
state for crystallographic refinement using appropriate
positional and chemical restraints between conformations
within these states.49 Alternatively, the new PDBx/mmCIF
format that was recently adopted by the PDB could be
used to explicitly define hierarchical relationships between
alternative conformations.

Another important direction is improving ligand
models, and correlating protein alternate conformations
with alternate ligand binding modes. Currently, qFit
lacks chemical knowledge of ligand atoms such as
hybridization and protonation. Incorporating this knowl-
edge, for example with the help of sophisticated force
fields that work in tandem with crystallography maps,50

will greatly improve ligand model quality and help deter-
mine the precise interactions between protein and ligand.

Finally, the problem of compositional heterogeneity
must be addressed. Some of the alternative conforma-
tions in the protein may be in response to the ordering of

FIGURE 4 qFit 3 generates occupancy-weighted multiconformer models for bound ligands. (a) Left: Deposited alternative

conformations of thiazolylpyrimidine, an inhibitor of CDK2, in a co-crystal structure (PDB ID: 5hq5). The 2mFo-DFc composite omit density

map is contoured at 1σ (dark blue cloud) and at 0.5σ (light blue cloud and grey mesh). Occupancies of alternative conformations are labeled

in italics. Right: qFit-ligand successfully identifies both deposited alternative thiazolylpyrimidine conformations, as well as an additional,

similar conformer. (b) Left: Deposited conformation of 4-(4-benzylphenyl)thiazol-2-amine, an epoxide hydrolase selective inhibitor, co-

crystallized with human Leukotriene A4 Hydrolase (PDB ID: 4l2l).42Right: qFit-ligand models both the deposited 4-(4-benzylphenyl)thiazol-

2-amine conformation and suggests two additional conformations that, unlike the deposited conformation, fit entirely within the 1σ density

contour
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other components in the unit cell (heteroatoms such as
ligands, crystallographic additives, and solvent). While
multi-data set approaches, such as PanDDA,11 may
increase confidence in modeling partially occupied
ligands and crystal additives, addressing the problem of
partially occupied solvent may be bootstrapped by using
stereotypical interactions in a solvated rotamer library.51

Solving this problem will also help to better define the
border between proteins or ligands and bulk solvent,52

which is likely to be key to reducing the “R-factor gap in
crystallography.”53

4 | CONCLUSION

X-ray crystallography and cryo-electron microscopy remain
the dominant experimental techniques to obtain structural
information for proteins and their complexes with other mac-
romolecules or with ligands, like therapeutic chemical com-
pounds. New, emerging experimental techniques in X-ray
crystallography and ever-increasing resolution limits in cryo-
EM can reveal an ensemble of protein and ligand conforma-
tions that can provide insights into molecular mechanisms
and function. qFit 3 automates interpreting an ensemble
from X-ray or cryo-EM density maps, and generates an

unbiased, internally consistent, parsimonious model of con-
formational heterogeneity. We refactored qFit with a specific
focus on efficiency and ease-of-use, so that it effortlessly
installs and runs on a standard laptop to facilitate advanced
interpretation of experimental structural biology data.

5 | METHODS

5.1 | qFit algorithm

5.1.1 | Overview

qFit samples numerous conformers and uses a determin-
istic approach to select a small ensemble of these con-
formers that parsimoniously explains local density. The
method starts from an initial single-conformer model and
generates candidate conformers for each residue/ligand
in the initial structure. It evaluates all possible combina-
tions of these conformers to determine an optimal
ensemble. A final relabeling step ensures that conformers
of different residues/ligands have consistent altloc labels.
For all analyses in this manuscript, default parameters
were used unless otherwise stated. Figure 5 provides a
graphical overview of both the qFit-protein and qFit-

FIGURE 5 A flowchart of the sample-and-select protocols for (a) qFit-protein, and (b) qFit-ligand. QP = quadratic program;

MIQP = mixed-integer quadratic program. See Figure S3 for a flowchart of the subsequent refinement stage
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ligand algorithms, the two main command-line utilities
of the qFit 3 package for automatic multiconformer
modeling of proteins or ligands.

5.1.2 | Input

The qFit 3 protocol accepts input density maps or map
coefficients in several commonly accepted crystallo-
graphic or cryo-EM file formats (MTZ, CCP4). For best
performance, we recommend the use of a composite omit
map for crystallographic densities.54 All runs of qFit 3 on
crystal structures described in this manuscript used an
input composite omit map generated with the phenix.
composite_omit_map command from the Phenix software
suite.34 Refinement was carried out on each partial model
(omit-type = refine) and default parameters were used for
this calculation. qFit 3 also expects a PDB file containing
the structure of interest as input. Hydrogens are automat-
ically removed to provide uniform treatment of input
models. Note that during the final refinement stage,
hydrogens will be (re-)added (see Final refinement
script). For analyses described in this manuscript, we
removed all alternate conformers (except for altloc A)
using the phenix.pdbtools executable and used the
resulting single-conformer input structure as input for all
subsequent modeling.

5.1.3 | Map treatment

qFit 3 converts the input maps to absolute scale follow-
ing the protocol described in Reference 55. The soft-
ware creates a lookup table corresponding to the
theoretical spatial density value distribution for each
atomic element for radial shells spaced at 0.01 Å. The
mask radius for this calculation is resolution-
dependent (default radius = 0.5 Å + resolution/3). qFit
3 indirectly avoids clashes during sampling by means
of a real-space density subtraction. It uses all atoms
whose conformations are not being sampled to calcu-
late a density map to perform this real-space subtrac-
tion. This prevents undesirable modeling into density
from neighboring residues/side chains. The mask
radius and an option to use excluded volume for clash
detection instead, as detailed in Reference 33, can be
determined via the command line (-scale-rmask, -exter-
nal-clash). Different sets of scattering factors are used
for electron density maps from X-ray crystallography
vs. Coulomb potential maps from cryo-EM. For conve-
nience, we refer to both types of maps as “density
maps” in this paper.

5.1.4 | Conformational sampling for
residues

qFit 3 exhaustively samples residue conformations in
three stages: backbone sampling, Cα-Cß-Cγ bond angle
sampling (for certain residues), and side-chain sampling
(Figure 5a). These are all enabled by default, but can be
individually disabled via command-line options (-no-
backbone, -no-sample-angle, -no-sample-rotamers).

5.1.5 | Backbone sampling

qFit 3 samples backbone conformations by means of a
nullspace inverse kinematics algorithm.29,36,48 Backbone
sampling for each residue extends to neighboring resi-
dues, two on each side. Backbone sampling is not per-
formed if a residue lacks two neighbors on both sides
(e.g., close to terminal residues).

The Cß atom of the residue of interest (or O atom for
Gly) is moved in the direction of the major and minor
axes of its thermal ellipsoid. That motion is accommo-
dated using its surrounding five-residue fragment to pro-
ject adjustments to its dihedral angle degrees of freedom
onto the subspace of motions that keeps the fragment
closed (i.e., nullspace inverse kinematics). By default,
three amplitudes along the ellipsoid axes are used for this
sampling (0.1 + σ, 0.2 + σ, 0.3 + σ), where σ is randomly
selected in the interval [−0.125, 0.125]. Altogether, three
amplitudes times six directions = 18 positions for the Cß
(O in case of glycine) are tested. The input conformation
is also added to the ensemble, leading to 19 backbone
conformations after backbone sampling. Command-line
options allow the user to tune amplitudes and the maxi-
mum value of σ. Expanding the number of sampled
amplitudes can improve the ability to capture backbone
motions, at the expense of additional computational com-
plexity. Peptide flips36 are not yet implemented in qFit 3.

5.1.6 | Cα-Cß-Cγ bond angle sampling

For amino acids with large planar aromatic groups (Phe,
Tyr, Trp, His), qFit samples around the Cα-Cß-Cγ bond
angle of the 19 backbone conformations resulting from
the previous sampling step. For each conformation, we
sample the Cα-Cß-Cγ bond angles as follows: [θ − 7.5�, θ
− 3.75�, θ, θ + 3.75�, θ + 7.5�]. Both the range and the
step of the bond angle sampling can be adjusted via the
command line. This step expands the number of sampled
conformations to 95 for the large planar aromatic
residues.
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5.1.7 | Side-chain sampling

Side-chain sampling in qFit 3 is performed by iteratively
rotating around the χ angles of ideal rotamers. The proto-
col begins by rotating around χ1. For each of the (19 or
95) backbone conformations, we rotate around each of
the rotamers for the target residue in the penultimate
rotamer library.26 For each rotamer, we explore a sam-
pling window using a rotamer neighborhood of [−60�,
+60�] at 10� intervals. Both the sampling window and
the step size can be defined via command-line options
(-rotamer-neighborhood, -dihedral-stepsize). For the
default parameters, at most 19*5*(8+1)*13 = 11,115 con-
formations are generated (with either Phe, Tyr, Trp, or
His), which provides a balance between performance and
accuracy. From this set, we remove conformations that
lack support from the subtracted density map (voxel with
minimum density intensity <0.3 e−1 Å−3), conformations
that contain self-collisions (based on hard spheres), and
conformations that are redundant (using an all-atom
RMSD threshold of 0.01 Å). These exclusion strategies
can be adjusted via command-line options. For protein
and ligand atoms, B-factor sampling is also a non-default
option.

Once the backbone and χ1 sampling is complete,
the protocol initiates a selection step based on our
optimization strategy (see Optimization protocol for
more details). We select all atoms starting from the
backbone up to the atoms involved in the χ angle being
sampled (χ1 in this first iteration). The remaining
atoms are rendered inactive, and their density contri-
bution is not taken into account during optimization.
Up to five conformers can be selected at each iteration,
which then serve as the basis for sampling of subse-
quent χ angles.

From the second iteration onwards, we sample up to
two χ angles simultaneously (also defined via the com-
mand line, -dofs-per-iteration). After sampling χi we
exclude unsupported, clashing, and redundant conformers
(as outlined above) and use this filtered conformer ensem-
ble to sample around χi+1. In the worst-case scenario
(Arg), χi leads to 5*(34+1)*13 = 2,275 conformers and up
to 2,275*(34+1)*13 = 1,035,125 conformations are pro-
duced for χi+1. In practice, this number of conformations
is never produced owing to redundancy. We limit the
number of conformations that can be used during opti-
mization to 15,000 for computational efficiency and
memory (RAM) constraints. If sampling two χ angles in
a single iteration leads to more than 15,000 conformers,
we reduce sampling to a single χ for that iteration. Side-
chain sampling concludes when all χ angles have been
sampled.

5.1.8 | Conformational sampling for
ligands

Ligand sampling in qFit 3 is performed in two steps: a
local rigid body search followed by an iterative step
which samples the degrees of freedom about the flexi-
ble areas of the ligand33 (Figure 5b). For the local sea-
rch, we identify all possible roots, that is, rigid
fragments of atoms. Rigid fragments are defined as a
set of connected atoms that do not contain a rotatable
bond. We sample conformations starting from each
possible root. Around the center of each ligand root, we
test 100 possible rotations, by sampling rotation space
in intervals of (0�, 10�). For each rotation, we enumer-
ate possible translations for x, y, and z coordinates in
the interval (−0.2 Å, 0.2 Å) at 0.1 Å increments. The
local search leads to 100(rotations)*125
(translations) = 12,500 conformers. We then exclude
conformers that do not have support from the density
(voxel with minimum density intensity <0.3 e−1 Å−3)
and conformations that are redundant, using an all-
atom RMSD threshold cutoff of 0.01 Å. Additionally,
conformers with internal (ligand) or external clashes
(receptor) are removed using a spatial hashing algo-
rithm, which efficiently converts the 3D coordinates to
a 1D hash table to determine if the sampled portion of
the ligand occupies the same spatial coordinates as any
other part of the ligand and/or receptor. After this
exclusion step, remaining conformations are used as
input for the optimization routine (see below), which
selects up to five conformers of each root to best repre-
sent the local density.

Still treating each root independently, we take the
root fragments selected by the local rigid body search and
“expand” each fragment to the full ligand, by iteratively
sampling around rotatable bonds. The protocol follows a
rotatable bond hierarchy from the root to the extremities
of the molecule. For each rotatable bond, we sample all
angles in a [0�, 360�] interval at 10� increments. Two
rotatable bonds are sampled at a time, leading to
5*36*36 = 6,480 conformations per iteration. At each iter-
ation, we exclude conformers that do not have support
from the density (voxel with minimum density intensity
<0.3 e−1 Å−3), those with an all-atom RMSD threshold
cutoff of 0.01 Å, or that contain internal or external cla-
shes. After exclusion, qFit uses the optimization routine
to select up to five conformers to be used for the next iter-
ation. After all rotatable bonds have been sampled, up to
five conformers can be output for each root. One final
optimization step is used to select up to five consensus
conformers from the pool of conformers produced across
all roots.
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5.1.9 | Optimization protocol

We frame the problem of selecting a subset of con-
formers that best represents local density as an optimi-
zation problem. Each conformer has an occupancy ωi

associated with it. The vector of all occupancies ωT

represents the regression coefficients for the optimiza-
tion, with the extra constraints that the coefficients ωi

are non-negative (ωi ≥ 0) and their sum lies in the unit
interval ð0≤Σ

i
ωi ≤ 1Þ. We use a regression model to opti-

mize real-space residuals, calculated from the observed
density (ρobs) against the occupancy-weighted sum of the
calculated densities (ρi

calc) for all conformers. We can for-
mulate this problem as constrained quadratic
optimization:

min
ω

k ρobs−Σ
i
ωiρcalci k2

subject to 0≤Σ
i
ωi ≤ 1

ωi≥0 for i=1,…,N:

Residuals are calculated over all voxels within (0.5 +
resolution / 3) Å from any active atoms across all input
conformers. To prevent overfitting conformers with arbi-
trarily small occupancies, we require a threshold
ωi≥tdmin for i=1, :::,N constraint on the occupancies, turn-
ing the problem into a mixed-integer quadratic pro-
gram (MIQP):

min
ω

k ρobs−Σ
i
ωiρcalci k2

subject to zitdmin ≤ωi ≤ zi, zi� 0,1f gN
0≤Σ

i
ωi ≤ 1, for i=1,…,N :

Note that this ensures that the number of conformers
selected is at most 1=tdmin . The optimal threshold param-
eter is determined using a penalized-likelihood
criteria (see below). An MIQP is NP-hard (i.e., it is
unknown if the problem can be solved or even verified
in polynomial time), thus applying an MIQP solver
directly to the conformers output from our sampling
step is computationally inefficient.29,36 Applying a QP
solver to the thousands of conformers output from our
sampling routine, and then selecting the QP-fitted
conformers with non-zero occupancy as input for
MIQP, allows for near-optimal solutions to be calcu-
lated within a tractable time. Our protocol uses cvxopt
(https://cvxopt.org/) and a proprietary, freely avail-
able implementation of the IBM ILOG CPLEX Optimi-
zation Studio (Python API, version 12.10) to solve QP
and MIQP programs.

5.1.10 | Achieving parsimony by means
of the BIC

To prevent overfitting and to ensure optimal model selec-
tion, we use the BIC to decide on model complexity. For
every optimization call in qFit, we iteratively test increas-
ing values of the threshold parameter tdmin and determine
if the gain of information justifies the use of a more com-
plex model. We fit iteratively, allowing the maximum
number of conformers to vary from 1 up to 5 conformers
ranked according to real-space correlation. For each iter-
ation, we use our combined QP/MIQP routine to opti-
mize the real-space residual sum of squares (RSS). We
calculate the BIC for each level of complexity according
to the following formula:

BIC = n ln(RSS/n) + k ln(n),

where n is the number of voxels in our resolution-
dependent mask (see previous section for details) and
k=4nactive atoms=tdmin is the number of parameters in the
model. Each active atom during sampling has four
parameters: x, y, z, and B-factor. Note that the occupan-
cies are the regression coefficients and not parameters.
The factor 1=tdmin is a proxy for model complexity and
imposes a limit on the maximum number of conforma-
tions. We select the number of conformers that mini-
mizes the BIC.

The -threshold option allows the user to tune the
limits on model complexity relative to the default of 0.2
(i.e., max 5 conformations).

5.1.11 | Parallelization

qFit 3 can be run individually for a single residue or
ligand of interest, or in parallel across a whole protein
using Python's multiprocessing module to spawn embar-
rassingly parallel subprocesses that run qFit across all
residues in a target protein. Up to this point, qFit samples
and scores residues individually and independently: there
are no interdependencies between these processes.

Once a residue has finished sampling & selecting, the
selected conformers (QP/MIQP) are saved. These check-
points are used to resume operation in the case of an
abrupt exit.

5.1.12 | Validation metrics

For each residue/ligand modeled by qFit 3, we output
several validation metrics, which include the BIC and the
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related Akaike information criterion AIC = 2k + n ln
(RSS) with n and k as above. qFit 3 also reports a confi-
dence interval for the real-space cross-correlation of the
proposed conformers. The confidence interval is calcu-
lated from the Fisher z-score of the real-space cross-
correlation r56:

z = 0.5ln((1 + r)/(1 − r))

Note that the z-score is approximately normally dis-
tributed with a standard deviation of σ= n−3ð Þ−1=2,
where n is the number of voxels in our resolution-
dependent mask around the set of conformers being
assessed. qFit 3 reports the 95% confidence interval
z±1.96σ for the cross-correlation. Overlapping intervals
suggest that the gain in cross-correlation is statistically
not significant; we cannot reject the null hypothesis that
the cross-correlations are the same at 95% confidence.

These auxiliary validation metrics are not used to fil-
ter results, but provide a guideline for balancing gain of
information vs. model complexity.

5.1.13 | Building an internally consistent
structural model

In the procedure above, residues are modeled indepen-
dently, that is, without taking into account multi-
conformer models for neighboring residues. This leads to
two modeling inconsistencies. First, consecutive residues
may have different occupancies for each altloc, or even a
different number of alternate conformations. Second,
alternate conformers of (not necessarily consecutive) side
chains in a spatial neighborhood can clash owing to
inconsistent assignment of altloc identifiers. To resolve
these two inconsistencies, we execute two routines: qFit-
segment, which addresses the problem of inconsistency
along the backbone, and qFit-relabel, which resolves
clashing alternate conformers between neighboring resi-
dues by reassigning altloc labels.

The qFit-segment routine starts by identifying all seg-
ments along the backbone for which all residues have at
least two backbone conformers. To mark the start and
end points of such backbone segments, we identify resi-
dues for which either (a) a single conformer was output,
or (b) where the backbone Cα and O atoms of that resi-
due's conformers do not deviate by more than 0.05 Å. A
segment is then delimited by these single-backbone-
conformer residues. To create consistent segments, we
proceed iteratively. We break the segments in fragments
of up to 4 residues (adjustable via the command line). We
enumerate all possible combinations of conformers for
the fragment, which at worst case leads to 54 = 625

possible conformers. We use our optimization strategy
(QP/MIQP iteratively, using the BIC) to select up to five
conformers per fragment based on optimal fit to the
experimental map (not based on covalent geometry). To
ensure consistency with the PDB file format and compati-
bility with refinement software, we duplicate conformers
for some residues within a fragment as needed to ensure
that all consecutive residues have the same number of
backbone conformers. Once all 4-residue fragments have
been modeled in this fashion, we proceed to enumerate
all possible combinations of such length-4 fragments.
This leads to fragments of at most length 16, and, again,
at worst case 54 = 625 possible conformers. We continue
to iterate in this fashion, enumerating all possible combi-
nations and solving/modeling, until the segment is com-
pleted. The output of the qFit-segment routine is
segments, each with up to five conformers, for which the
backbone is consistent, that is, for which all atoms for
each conformer have the same label and occupancy.

Next, qFit-relabel relies on simulated annealing
(SA) optimization of a Lennard-Jones potential to
reassign altloc labels. We calculate the pairwise Lennard-
Jones potential across every atom of all conformers out-
put by qFit. Parameters for the Lennard-Jones calculation
were taken from the Amber ff99SB forcefield.57 The pro-
cedure selects five segments at random (a segment can
include a single residue in this case) and randomly shuf-
fles their labels. The user can use the -random-seed flag
to ensure consistency between runs. We then assess the
change in the Lennard-Jones potential and either accept
or reject this move. The probability of accepting an unfa-
vorable move is defined as:

P = exp(−ΔLJ/Temperature)

The temperature begins at 273 K, and decreases by 10%
every 10,000 perturbations. By default, 100,000 perturba-
tions are sampled during relabeling. Benchmarking suggests
that this value is sufficient for the scoring function to con-
verge (data not shown). The output of the relabeling routine
is a multiconformer model with up to five conformers per
residue, in which backbones are consistent and in which
alternate conformers for side chains are not clashing.

5.1.14 | Final refinement script

We performed iterative refinement on the qFit
multiconfomer models using version 1.18 of the Phenix
software suite34 to normalize the initially distorted cova-
lent geometry, to ensure that the output models are prop-
erly fit into density (Figure S3), and to remove any
unnecessary conformers.

RILEY ET AL. 281



For X-ray crystallography structures, this iterative refine-
ment protocol uses the phenix.refine executable (script name:
qfit_final_refine_xray.sh). If the resolution is >1.55 Å, ADP
refinement is disabled. The initial round of refinement is
done without hydrogens and uses the
strategy = *individual_sites. We then (re-)add hydrogens to
the model.58 The next rounds of refinement use the following
parameters: "strategy = *individual_sites *individual_adp
*occupancies", "number_of_macro_cycles = 5". At each itera-
tion, we remove all conformers for which the occupancy fell
below a cutoff of 0.09. This iterative cycle continues for as
long as atoms are being removed due to this occupancy
cutoff criterion. We then perform one last refinement
round.

For cryo-EM structures, we use a similar refinement
protocol as described above, but using phenix.
real_space_refine37 (script name: qfit_final_refine_cryoem.
sh). All rounds of real-space refinement use the default
parameters.

5.2 | High-performance and cloud
computing

qFit is capable of scaling from single laptops to large
high-performance computing clusters. The following
instructions enable qFit on Amazon's AWS, and should
readily generalize to other cloud providers and RPM-
based Linux distributions. We describe configurations at
two different scales: a single instance and an autoscaling
cluster with a free master instance.

5.2.1 | Single instance

Launch an instance that will be used to execute qFit.
AWS's c5.9xlarge instance has an appropriate number of
cores and amount of memory for most proteins.

The following Bash script, reproduced from docs/
aws_deploy.sh in the qFit repository, installs qFit and its
dependencies within a conda environment:

#!/usr/bin/env bash.
# Tested on Amazon Linux 2, but should work on most
RPM-based Linux distros
# install Anaconda RPM GPG keys
sudo rpm -import https://repo.anaconda.com/pkgs/misc/
gpgkeys/anaconda.asc
# add Anaconda repository
cat <<EOF j sudo tee /etc/yum.repos.d/conda.repo
[conda]
name = Conda

baseurl=https://repo.anaconda.com/pkgs/misc/rpmrepo/
conda
enabled = 1
gpgcheck = 1
gpgkey=https://repo.anaconda.com/pkgs/misc/gpgkeys/
anaconda.asc
EOF

sudo yum -y install conda

sudo yum -y install git gcc

source /opt/conda/etc/profile.d/conda.sh
conda create -y-name qfit
conda activate qfit

conda install -y -c anaconda mkl

conda install -y -c anaconda -c ibmdecisionoptimization
cvxopt cplex

git clone https://github.com/ExcitedStates/qfit-3.0.git

cd qfit-3.0/
#Optionally, uncomment the following line to set a spe-
cific version of qFit
#git checkout v3.2.0
pip install.

Consider creating an image of the instance at this
point to avoid executing the above script each time an
instance is launched from a base instance.

After installation, it is necessary to execute source
/opt/conda/etc/profile.d/conda.sh
to set up conda within your Bash shell then activate the
conda environment by executing
conda activate qfit.

Using the example described in qFit's README.md,
alternative conformers for all residues in 3K0N can be
calculated by executing
qfit_protein 3K0N.mtz -l 2FOFCWT, PH2FOFCWT
3K0N.pdb -p 36
for 3K0N.mtz and 3K0N.pdb in the current working
directory, utilizing up to 36 cores.

5.2.2 | Autoscaling cluster

Additionally, ParallelCluster can be used to create an
autoscaling cluster to maximize efficiency of cloud
resources. See Supplementary Methods for details.
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