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Abstract The thiamine pyrophosphate (TPP) riboswitch is a cis-regulatory element in mRNA that

modifies gene expression in response to TPP concentration. Its specificity is dependent upon

conformational changes that take place within its aptamer domain. Here, the role of tertiary

interactions in ligand binding was studied at the single-molecule level by combined force

spectroscopy and Förster resonance energy transfer (smFRET), using an optical trap equipped for

simultaneous smFRET. The ‘Force-FRET’ approach directly probes secondary and tertiary structural

changes during folding, including events associated with binding. Concurrent transitions observed

in smFRET signals and RNA extension revealed differences in helix-arm orientation between two

previously-identified ligand-binding states that had been undetectable by spectroscopy alone. Our

results show that the weaker binding state is able to bind to TPP, but is unable to form a tertiary

docking interaction that completes the binding process. Long-range tertiary interactions stabilize

global riboswitch structure and confer increased ligand specificity.

DOI: 10.7554/eLife.12362.001

Introduction
The gene-regulatory activity of a riboswitch is mediated by its ability to form a substructure, called

the aptamer domain, that binds—and thereby senses—a ligand, which is generally a small metabo-

lite (Roth and Breaker, 2009; Serganov and Nudler, 2013; Serganov and Patel, 2012). Riboswitch

aptamers fold and then bind their cognate ligands in a highly specific manner, and as they do so,

they compete with alternative RNA structures that can form in conjunction with other domains of the

riboswitch, which function either to permit, or to prevent, downstream gene expression. The

aptamer of the TPP riboswitch senses the abundance of the coenzyme thiamine pyrophosphate, and

in response, reduces the uptake of the vitamin thiamine. Versions of the TPP riboswitch have been

discovered in all three kingdoms of life (Cheah et al., 2007; Sudarsan et al., 2003; Winkler et al.,

2002). In Arabidopsis thaliana, the TPP aptamer is located upstream of the 30 untranslated intron

region of the thiC gene, and it contains a complementary sequence that, in the absence of TPP, acts

to sequester a downstream splice site: it therefore functions by modulating alternative gene splicing

(Wachter et al., 2007).

Crystal studies have identified striking similarities between the structures of the ligand-bound

forms of a truncated TPP aptamer from A. thaliana and the thiM aptamer from Escherichia coli

(Edwards and Ferre-D’Amare, 2006; Serganov et al., 2006; Thore et al., 2006). Specifically, both

eukaryotic and prokaryotic aptamers share a common binding conformation (Figure 1),
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characterized by contacts formed by (1) the TPP pyrimidine ring and the ‘sensor’ helix arm P2/3, (2)

the TPP pyrophosphate and ‘sensor’ helix arm P4/5, and (3) a long-range tertiary rearrangement

that brings together, and stabilizes, an interaction between the two arms carrying the L5 loop and

the P3 stem (Noeske et al., 2006).

Results from single-molecule force spectroscopy experiments have suggested that TPP binding is

modeled kinetically by two sequential states: initial weak binding, followed by strong binding

(Anthony et al., 2012),

UF�!F þTPP
�TPP

F 0 �TPP*)F 00 �TPP (1)

where UF refers to the unfolded form, and F, F0 and F00 refer to folded forms. The existence of the

folded states was inferred from measurements of the molecular extension of the aptamer as a func-

tion of the external force applied (force-extension curves, or FECs) during mechanically-induced

unfolding. FECs obtained for the binding of TPP in the weakly bound, intermediate F0 state were

strikingly similar to FECs measured for the complete binding of two TPP analogs, thiamine mono-

phosphate (TMP) or thiamine (T). These analogs lack one or both phosphate groups, respectively,

resulting in incomplete binding to the bipartite ligand-binding site, which normally forms contacts

with both the thiamine and phosphate moieties. Similar FECs were also measured for TPP binding

by a mutant aptamer (Anthony et al., 2012) that is unable to form tertiary contacts between the

two arms carrying L5 and P3. Taken together, these observations are consistent with two nonexclu-

sive possibilities for the structure of the F0.TPP intermediate: (1) TPP may be incompletely coordi-

nated at the binding site in this aptamer form, or (2) the aptamer structure may not have brought

together its L5 and P3 arms, whose docking may be required for strong binding and the transition

to the F00.TPP state.

Here, we address the structural ambiguity posed by the F0.TPP state by simultaneously monitor-

ing fluorescent probes attached to the arms carrying L5 and P3, and aptamer folding, using an opti-

cal trap augmented with smFRET capabilities (Figure 2). By studying folding in the presence of TPP

eLife digest When a gene is switched on, its DNA is first copied to make a molecule of

messenger ribonucleic acid (mRNA). The genetic code in the mRNA is then translated into a protein.

There are also untranslated regions within mRNAs that do not code for protein themselves, but

serve to regulate whether or not a protein is produced from the rest of the mRNA. For example,

many mRNAs contain a motif in their untranslated region called a ’riboswitch’. These motifs

selectively bind to molecules that are the products of metabolic processes. One riboswitch found in

bacteria, animals and plants binds to a molecule known as thiamine pyrophosphate (TPP) and

regulates genes that control the uptake of a vitamin called thiamine into cells.

Newly made mRNA molecules are linear strands that then fold into three-dimensional structures.

The TPP riboswitch can adopt distinct shapes depending on whether it is bound to TPP or not.

Knowledge of these structures is crucial for understanding how riboswitches regulate protein

production. Previous research reported the folding of a TPP riboswitch from bacteria.

Here, Duesterberg et al. used a combination of two techniques known as force spectroscopy and

Förster resonance energy transfer (FRET) to study the folding of the TPP riboswitch from a plant

called Arabidopsis thaliana. The experiments show that in the presence of TPP, structural changes

occur in two arm-like appendages – known as helix arms – that extend out of the core of the

riboswitch. The riboswitch adopts a particular shape when TPP is strongly bound to it, and in this

shape the riboswitch can regulate the activity of certain genes. However, if the riboswitch is only

weakly associated with TPP, it takes on a shape in which the two helix arms are further apart and the

riboswitch is unable to form the interactions required to complete the process of binding to TPP.

Duesterberg et al.’s findings reveal that the way in which the A. thaliana riboswitch changes

shape when it is bound to TPP is different to that of its bacterial counterpart. The next challenge will

be to observe these shape changes in even more detail, and to use these new techniques to study

other riboswitches in various organisms.

DOI: 10.7554/eLife.12362.002
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and its analogs, we can explore the roles of long-range tertiary rearrangements and phosphate bind-

ing in ligand recognition.

Instruments that combine the capabilities of single-molecule fluorescence and optical trapping

represent a comparatively new development (Candelli et al., 2011; Comstock et al., 2011;

Harada et al., 1999; Lang et al., 2004; Mameren et al., 2006; Sirinakis et al., 2012; van Mameren

et al., 2009), and these continue to present significant technical challenges (Lang et al., 2004;

van Mameren et al., 2008). Recently, novel findings have begun to emerge using optical trapping

and smFRET (Comstock et al., 2015; Ngo et al., 2015; Suksombat et al., 2015).

Results

Direct correspondence between P3-L5 configuration and secondary
structural conformation
Using a dual-beam optical trap, we applied controlled loads to each end of an individual TPP

aptamer RNA (30 and 50), and measured the end-to-end extension during mechanical unfolding

(Figure 1A). Tertiary interactions were simultaneously scored by a FRET readout between donor and

Figure 1. Single-molecule assay, crystal structure and schematic of the TPP aptamer. (A) Experimental geometry of the dumbbell optical-trapping assay

with simultaneous FRET monitoring, with key components labeled (not to scale). (B) Crystal structure of the truncated TPP riboswitch aptamer with a

shortened P3 stem (PDB entry 3D2G). Dye-labeling sites for ATTO550 and ATTO647N are indicated, at nucleotides G88 (green) and U25 (red),

respectively. (C) Secondary structure of the TPP riboswitch, with structural components indicated in color. Sequences surrounding the amino-modified

uracil bases in the sensor helix arms (5-N-U and 5-LC-N-U; Integrated DNA Technologies, Coralville, IA) are shown, with the modified bases colored

(P3, red; L5, green).

DOI: 10.7554/eLife.12362.003
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acceptor fluorescent dyes, ATTO550 and ATTO647N (Figure 1B), which were covalently attached to

the L5 and P3 helix arms, respectively. Aptamers were subjected to repeated cycles of unfolding

and refolding. After a preliminary unfolding of the RNA, the optical traps were brought into close

proximity, which reduced the applied load below 5.0 pN for a time of 0.5–30 s, allowing the aptamer

to refold under low force (the refolding step). The force was subsequently ramped up by increasing

the trap separation linearly at 200 nm/s (Figure 3, Figure 3—figure supplement 1, 2), as both

molecular extension and fluorescence signals were acquired. After full extension, the refolding/

unfolding cycle was repeated, until either a dye photobleached or the RNA tether broke. As

reported previously, FECs could be categorized into one of three distinct forms (Figures 3A,B,C)

(Anthony et al., 2012), each corresponding to a different folded conformation, as follows. In the

absence of TPP, FECs for the folded aptamer (F) displayed three opening transitions, or rips, corre-

sponding to the sequential rupture of the secondary structural elements (P1 + P2), P4/5 and the P3

stem, respectively. In the presence of TPP, two additional FEC forms were observed: (1) an FEC with

a single opening transition at low force (<20 pN), sometimes followed by an additional opening tran-

sition, that corresponds to the weakly bound state, F0.TPP, and (2) an FEC with a single, high-

force (>20 pN) transition, that corresponds to the tightly bound, fully folded state, F00.TPP. FRET sig-

nals acquired during force ramps could be categorized into three groups, with characteristics that

were attributable to each of the three established aptamer conformations, F, F0.TPP, and F00.TPP. In

the absence of TPP (Figure 3A), the FRET efficiency of the F state remained stable near a low value

Figure 2. Schematic optical layout of the dual-beam optical trap and FRET. Solid lines indicate lasers and light sources: 830 nm detection laser

(orange), 1,064 nm trapping laser (red), 532 nm excitation laser (green), and 470 nm illuminating LED (blue). Filled bars are emissions received by these

detectors: position sensitive detector (PSD), electron multiplying charge coupled device (EMCCD) camera, and a video camera. Lasers are maneuvered

and modified in intensity using acousto-optic deflectors (AOD) and acousto-optic modulators (AOM), respectively. The dual beam trapping laser is

expanded using a beam expander (BE) and split with a beam splitter. The excitation laser emission goes through a dichroic mirror (D5, T640LP;

Chroma, Brattleboro, VT) to split the acceptor and donor emissions. Filters (F), Wollaston prisms (W), pinholes (P), dichroic mirrors (D), mirrors (M), and

telescopes (T) are labeled.

DOI: 10.7554/eLife.12362.004
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under reduced loads, and then dropped abruptly to near zero upon the first opening transition, as

the duplex elements P1 and P2 unfolded. In the presence of TPP (Figure 3B), the FRET efficiency of

F0.TPP started out with a similar low value, but then transitioned to an intermediate level which was

not observed in the absence of ligand, until the elements P1, P2 and P4/5 unfolded together,

Figure 3. Representative FEC and FRET traces. Representative traces of unfolding for the aptamer conformations (A) F, (B) F0.TPP, and (C) F00.TPP.

Simultaneous force-extension curves (FECs; black lines) and FRET trajectories (black circles, gray lines) are parametrized by time. Colored boxes

indicate the APO (blue), WB (green), and SB (yellow) FRET states. Open arrowheads mark the end of the refolding period and the start of the force

ramp. Small, filled arrowheads mark the location of opening transitions.

DOI: 10.7554/eLife.12362.005

The following figure supplements are available for figure 3:

Figure supplement 1. Representative traces of various secondary state conformations and TPP concentrations.

DOI: 10.7554/eLife.12362.006

Figure supplement 2. FRET changes occur throughout the refolding period and the force ramp, up until the first rip.

DOI: 10.7554/eLife.12362.007
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resulting in an abrupt drop to near zero. This transition was followed by a very tiny rip,

barely detectable in the FEC, but not producing any further change in FRET, that corresponded to

the unfolding of P3 (Anthony et al., 2012). By contrast, FRET signals for F00.TPP (Figure 3C) first

jumped from a low to an intermediate FRET level (the same two levels, on average, displayed by

F0.TPP), but later transitioned to a high FRET level, characterized by a comparatively low variance,

until the final opening transition, corresponding to the unfolding of the entire aptamer, which

returned the FRET level to the baseline.

Cluster analysis establishes thresholds for the three FRET states
In both force and FRET channels, unfolding events produced abrupt drops in signal levels. We

recorded the FRET efficiencies prior to such events (defined as the opening FRET values) along with

the associated forces (defined as the opening force values). A plot of opening FRET versus opening

force revealed sub-populations that were binned by k-means cluster analysis (Figure 4A); setting k =

3 selected distinct clusters and established threshold values for each coordinate axis (Figure 4B).

Vertical (force) thresholds demark the three conformational forms, based chiefly on their secondary

structures: FECs with an opening force lower than 11.5 pN were assigned to aptamers unfolded

when not bound to TPP; opening forces between 11.5 pN and 21.0 pN were assigned to aptamers

Figure 4. Clustering analysis of opening FRET values, and global analysis of full-length FRET traces. (A) k-means clustering for opening FRET and

opening force values. Filled diamonds mark the mean opening force and opening FRET values for each of the k = 3 populations; dashed vertical and

horizontal lines indicate the thresholds for force and FRET states, respectively. (B) Table summarizing opening force and FRET centroids, and thresholds

for the clusters C1, C2 and C3. (C) Global fit (red) of all data (black histogram, with error bars) to a sum of four Gaussians. Individual Gaussian fits are

shown as colored lines, with the mean values indicated (vertical dashed lines). (D) Table of fit parameters for G1, G2 and G3 (N = 435).

DOI: 10.7554/eLife.12362.008

The following figure supplement is available for figure 4:

Figure supplement 1. k-means cluster analysis of opening force and FRET.

DOI: 10.7554/eLife.12362.009
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that unfolded in the F0.TPP state; and opening forces above 21.0 pN were assigned to aptamers

that unfolded from the F00.TPP state. The mean opening forces computed for each of the three clus-

ters (C1, C2, and C3) matched, within error, the force values that had been estimated in a previous

study using other methods (Anthony et al., 2012), validating the choice of k.

Horizontal (FRET) thresholds, 0.57 and 0.74, demark the FRET cutoffs for the clusters. The corre-

sponding FRET sub-populations were then compared to a global histogram of all single-molecule

records fitted to a sum of four Gaussians (Figure 4C). Mean values returned from the Gaussian fits,

G1, G2 and G3, were statistically consistent with mean values for opening FRET computed for the

C1, C2 and C3 clusters. By matching the FRET sub-populations against conformations previously

characterized by force assignment, we could infer the P3-L5 arm configurations, independent of

force. The lowest-valued FRET sub-population, corresponding to the APO state, reflects a significant

physical separation between the P3 stem and L5 loop, which remain consistently apart. The interme-

diate-value FRET sub-population, corresponding to the WB (weakly bound) state, reflects more prox-

imal stem-loop interactions. The highest-value FRET population, corresponding to the SB (strongly

bound) state, reflects the close apposition of P3 and L5. To characterize further P3-L5 arm behavior,

we used the cluster thresholds established for refolding to categorize segments of FEC records

obtained at forces up to 10 pN (i.e., prior to the first opening transition), including the refolding por-

tion, as follows. Segments of FRET trajectories below 0.57, or above 0.74, which tended to exhibit

comparatively lower variance, were assigned to the APO or SB states, respectively. FRET trajectories

between these values were assigned to the higher-variance, WB state (such trajectories included

short intervals where the FRET value made brief excursions above or below the threshold levels, but

never remained consistently out-of-range for more than one or two consecutive time points). Thus

separated, the individual FRET data were binned into histograms for the corresponding APO, WB,

and SB states (Figure 5A).

TPP analogs reveal differences in helix-arm configuration during ligand
binding
TPP analog ligands that are missing the terminal phosphate group, such as TMP (thiamine mono-

phosphate) and T (thiamine), are thought to be able to form contacts with only one half of the bipar-

tite binding site of the aptamer. In support of this notion, force spectroscopy has previously

established that FECs of the aptamer bound by such analogs closely resemble those corresponding

to the weakly bound, F0.TPP conformation (Anthony et al., 2012). We collected data for both FECs

and FRET trajectories for aptamer binding in the presence of TMP, T, and in the absence of ligand,

and applied the same clustering formalism as for aptamer binding in the presence of TPP

(Figure 5C). FRET trajectories acquired in the absence of ligand exhibited a low efficiency (mean =

0.46), and closely matched those assigned earlier to the APO state, which had been observed in the

presence of TPP, but prior to presumed ligand binding, lending additional experimental support to

that assignment. Aptamers bound to either TMP or T generated FECs similar to those previously

observed, and closely resembled the weakly bound conformation in the presence of TPP, as antici-

pated. The FRET efficiencies were similar for both T and TMP ligands (means = 0.64 and 0.69,

respectively). However, both these values are significantly lower than the efficiency of the WB state

obtained in the presence of TPP (mean = 0.73). Because the opening transitions in FECs tend to be

dominated by secondary structure, whereas the FRET signal reports a tertiary rearrangement, we

conclude that aptamers bound to TMP or T share a similar secondary structure with the aptamer

weakly bound to TPP, but differ in tertiary structure: specifically, the analogs TMP and T fail to bring

the helix arms together as closely as TPP.

Hidden Markov modeling of FRET refolding trajectories reveals rates of
aptamer helix arm dynamics
To quantify the helix arm dynamics, we fitted a sequential, four-state hidden Markov model (HMM)

to refolding portions of the FRET trajectories (obtained under negligible loads that permit structure

formation, <5 pN) (Figure 6A). FRET values and directional transition rates were obtained at TPP

concentrations of both 5 mM and 50 mM (Figures 6B,C). The corresponding values for FRET states

identified by hidden Markov modeling were identical, within statistical error, at both TPP concentra-

tions, and notably, also within statistical error for the corresponding states identified using k-means
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cluster analysis (Figure 6B and Figure 5B). We were therefore able to make a direct correspondence

between the HMM-identified states (called A, B, and C) and the clustered FRET states (Apo, WB,

and SB, respectively). At the higher TPP concentration, all transition rates except for the A fi B rate

remained the same within error, implying that only this transition, corresponding to the Apo fi WB

transition, is TPP-dependent (Figure 6C). The inferred dependence is also consistent with the kinetic

model proposed on the basis of force spectroscopy, where only the transition between states F0 and

F0 0.TPP is TPP-dependent (Figure 7A and 7B) (Anthony et al., 2012). Therefore, both FRET and

force data support a sequential, four-state kinetic model. However, the transition rates obtained

using the HMM approach are consistently faster than the rates previously derived from force spec-

troscopy alone. Specifically, at the high TPP concentration, the lifetime in the A state was vanishingly

short, and only a single dwell interval was scored by the HMM procedure. Instead, the vast majority

of records (N = 52 of 53) started out in state B, and thereafter made subsequent transitions between

B and C states. We conclude that the A fi B transition rate at the higher TPP concentration is likely

faster than our detection capability, and that the apparent 4-fold increase in this transition rate

should be taken as a lower bound.

Discussion
The concurrent use of force spectroscopy, which primarily monitors secondary structural states, and

FRET, which can probe tertiary structural rearrangements, has helped to reveal new details of the

interaction between ligand binding and conformational change in the TPP riboswitch

Figure 5. Distributions of segmented FRET data in the presence and absence of TPP and its analogs. (A) Segmented FRET data in the presence of

saturating TPP (2 mM). After segmenting, FRET records were categorized into APO (blue), WB (green), and SB (yellow) FRET states. (B) Table

summarizing FRET efficiency statistics. (C) FRET data from aptamers in the absence of TPP (purple), and in the presence of saturating (2 mM) T (pink)

and TMP (orange), displayed together with data for the SB state in the presence of TPP (yellow) for comparison. (D) Table summarizing FRET efficiency

statistics for the TPP, T, and TMP conditions indicated.

DOI: 10.7554/eLife.12362.010
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(Anthony et al., 2012). The eukaryotic aptamer folds quickly into a stable form, where the P3-L5

arm configuration remains open, as indicated by the stable, low FRET trajectories recorded in the

absence of ligand (Figure 3A, Figure 3—figure supplement 2F–H). By contrast, Haller et al. (2013)

reported that, in the absence of ligand, the arms of the bacterial form of the TPP aptamer inter-

change rapidly among three FRET states, as fit by a hidden Markov model, with dwell times around

100 ms (Haller et al., 2013). The slightly slower imaging rate employed here (20 frames/s, vs. ~50–

100 frames/s) should still have been adequate to detect any comparable flickering, in principle, but

none was evident in our records. The eukaryotic aptamer is therefore structurally more stable in its

unbound form (or conceivably, it switches among configurations, but at a significantly faster rate).

We note that the two TPP aptamers differ primarily in their P3 stem regions: the bacterial form lacks

a distal P3 extension that is present in the eukaryotic form, and this longer element may exert a sta-

bilizing role on the unbound aptamer.

Upon ligand binding, the P3 and L5 arms underwent a rapid conformational change, as mani-

fested by the FRET signal, corresponding to the transition from the APO to the WB state

(Figures 3B,C; blue to green boxes). The FRET levels in the WB state exhibited comparatively high

variance (Figure 5B), and appeared to flicker between intermediate and high FRET values. Transi-

tions out of the WB state were generally irreversible, and these led directly to the SB state, which

was characterized by a stable, high FRET level with significantly lower variance. We therefore inter-

pret the SB configuration as one where the two helix arms are fully docked, forming a tight, stable

P3-L5 tertiary interaction. Based upon the data, the WB state can be interpreted as one where the

P3 and L5 arms are partially docked, that is, they remain mobile but closer, on average, than in the

APO state. Alternatively, the WB state might represent a superposition of (less individually flexible)

docked and undocked conformations that interchange rapidly on the timescale of our data acquisi-

tion, at rates >>20 s-1 (Figure 6C). Put another way, the WB state must be mobile, and consistent

Figure 6. HMM modeling of refolding FRET trajectories. (A) Four-state HMM fit to a 30-second portion of concatenated refolding FRET trajectories in

the presence of 5 mM TPP. (B) Top: Reaction diagram for the four-state, sequential HMM model, with states UF and A (donor-fluorescing), and B and C

(acceptor-fluorescing). Bottom: table summarizing FRET values obtained 5 mM and 50 mM TPP concentrations for each state. (C) Table summarizing

directional rates for transitions between HMM states A, B, and C. The yellow icon indicates the TPP-dependent transition rate.

DOI: 10.7554/eLife.12362.011
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with either dynamic conformational flexibility or with static conformational heterogeneity

(Torella et al., 2011).

Helix arm behavior was examined further by exploring the effects of aptamer binding by the TPP

analogs, thiamine (T) and thiamine monophosphate (TMP). The binding site of the aptamer, located

at the central junction of the arms, is bipartite, and is able to bind to the thiamine moiety of TPP on

one side, and to phosphate groups on the other. One previous study of T and TMP, which lack one

and two phosphate groups, respectively, and therefore bind to only one side of the site, concluded

Figure 7. Correspondences among single-molecule state identifications, and model of aptamer binding to TPP. (A) Cartoon summarizing the

correspondence between analysis and data collection methodologies. The corresponding states and reaction schemes obtained from HMM analysis

(top line; pink circles), helix-arm configuration states obtained from FRET signals (middle line; blue circles), and secondary structural states inferred from

force spectroscopy (lower line; green ellipses) are shown. (B) Model for ligand binding and associated conformational changes. Colored labels indicate

states based on aptamer secondary structure (green circles and ellipses; derived from force data) and sensor-helix arm configuration (blue circles;

derived from FRET data). Prior to TPP binding, the sensor arms are apart. Subsequent to TPP binding, the arms remain mobile but begin to move

closer together in the weakly-bound, liganded state. This mobility may reflect a type of conformational heterogeneity that is either dynamic (top), with

flexible arms, or static (bottom), with rapid interconversions between transient states (square brackets; see text). The system subsequently transitions,

on a timescale of around a second, to a strongly bound state, with the sensor arms fully docked and largely immobilized.

DOI: 10.7554/eLife.12362.012
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that the lack of phosphates prevents proper alignment of the P3-L5 arms and ultimately, docking

(Noeske et al., 2006). For both bound analogs, the mean FRET efficiencies were smaller than the

corresponding FRET efficiency of the SB state (Figure 5D). These results imply that the sensor helix

arms spend most of their time farther apart when bound to TMP or T than when bound to TPP in

the F00.TPP conformation. We surmise that each additional phosphate group serves to draw the arms

closer together during ligand binding, and is responsible for the observed increase in FRET. Perhaps

more surprisingly, the FRET trajectories for the aptamer after binding onto TMP and T are stable

and low in variance, suggesting that although the P3-L5 structures are unable to dock, they remain

in a stable configuration (Figures 5C and 5D). This trend is reflected in the FRET variance obtained

during force ramp, which is low at 0.005 and 0.003 for T and TMP, respectively, but significantly

larger at 0.010 for the WB FRET state (Figures 5B and 5D). This result implies that when the

aptamer is bound to T or TMP, the arms are less dynamic than when the aptamer is bound to TPP in

the F0.TPP conformation. Taken together, these data suggest that aptamer binding of TPP in the

F0.TPP conformation is a state in which the helix arms are in close proximity due to the presence of

two phosphate groups, yet exhibit significant flexibility. This flexibility appears to be essential for

proper orientation of the helix arms, which primes the arms to dock and the aptamer to adopt the

F00.TPP conformation.

Our studies of the complete eukaryotic TPP riboswitch reveal a ligand binding process distinct

from that of the bacterial TPP riboswitch. We observed a rather rigid helix arm configuration during

the fully folded, APO state, in contrast to the dynamic helix arm behavior reported for the E. coli

TPP riboswitch in the absence of TPP. Upon TPP binding, we observed an increase in helix arm

dynamics in the WB state, which is also in contrast to bacterial studies that observed a reduction of

arm dynamics upon ligand binding. Our observations of FRET trajectories suggest that helix-arm

fluctuations occur at significantly faster rates than any secondary structural changes. Based on our

data, we conclude that both secondary and tertiary interactions are vital to tight TPP binding. We

speculate that in the eukaryotic aptamer, ligand binding first anchors the lower regions of the helix

arms, inducing strains that lead to fluctuations in the more distal regions. Such fluctuations increase

the frequency of contact between the P3-L5 arms, and thereby increase the probability of docking,

lowering the binding energy further. Future studies using additional FRET probes, and conducted at

even higher time resolution, should be able to probe independently the motions of the lower

aptamer regions.

The bacterial and eukaryotic forms of the TPP riboswitch share a similar core structure, bind iden-

tical ligands, and regulate thiamine pyrophosphate synthesis (albeit in rather different ways). How-

ever, it has become clear that even minor structural differences between forms can yield distinct

properties. For example, the comparatively longer and more stable P3 stem found in the eukaryotic

riboswitch leads to slower arm dynamics, as expected, with wide-ranging consequences. But piecing

together a more detailed, quantitative picture of the folding landscape, which includes strain-depen-

dent ligand binding and the formation of tertiary contacts during helix-arm docking, requires special

methodology, such as the combination of fluorescence and force spectroscopy pursued here. It is

still early days, but we anticipate that the combined force-FRET technique will be a powerful tool for

elucidating riboswitch function across all kingdoms of life.

Materials and methods

Sequences used
wtAtRs21 (64 nt) U88U (P3)
AUC GAG AGG GAC ACG GGG AAA CAC CAC CAU AUA U GCA CCA GGG GUG CUU GAA

CCA GGA (5-N-U)AG CCU

wtAtRs2 (Long Chain 64 nt) U25U (P4/5)
/5Phos/ GCG AAA AGG CGG GCU AUC CGG GAC CAG GCU GAG AAA GUC CCU UUG AAC

CUG AAC AGG G(5-LC-N-U)A AUG C
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wtAtRs3 (53 nt)
/5Phos/ CUG CGC AGG GAG UGU GCU AAC AAG GUC ACC AUC AUC CUG ACU AGA GUC

CUU GG

DNA splints
P45_splint_60
CTCTAGTCAGGATGATGGTGACCTTGTTAGCACACTCCCTGCGCAGGCATTACCCTGTTC

P3_splint_41
GCCCGCCTTTTCGCAGGCTATCCTGGTTCAAGCACCCCTGG

Nucleic acid labeling
An instrument characterization/calibration was performed using DNA hairpins with short tetraloops

as controls. We examined two hairpins: one with a 15-bp stem (15R50/T4) and one with a 20-bp

stem (20R25/T4). The nanomechanical properties of both hairpins have been extensively character-

ized in a previous force-spectroscopy study (Woodside et al., 2006). Hairpins were constructed by

ligating separately prepared 50 and 30 fragments (Figure 8A); in each of the fragments, a single

amino-modified thymidine residue was introduced near the base of the hairpin (Integrated DNA

Technologies). The modified bases were labeled with the fluorescent dyes, ATTO550 and

ATTO647N (ATTO-TEC), using an amine-labeling chemistry (Kricka, 2002; Solomatin and Hers-

chlag, 2009). The dye-labeled fragments were annealed using a temperature ramp protocol, from

95˚C to 4˚C in 40 min, and ligated with T4 DNA ligase (Invitrogen, Carlsbad, CA) for 30 min at 37˚C
(Akiyama and Stone, 2009). Proteins were removed by phenol-chloroform extraction, and the

ligated hairpins were ethanol-extracted. Doubly labeled hairpins were separated from incomplete

hairpin species on a 10% PAGE gel, then electro-eluted, followed by ethanol precipitation.

The TPP riboswitch was split into three fragments: wtAtRs1, wtAtRs2, and wtAtRs3

(Dharmacon, Lafayette, CO). Fluorescent dyes were attached via amino-modified uracil bases at G88

(5-N-U) and U25 (5-LC-N-U). G88 is found in the P3 stem structure of fragment wtAtRs1, and was

labeled with ATTO550 dye; U25 is found in the L5 loop of fragment wtAtRs3 and was labeled with

ATTO647N dye. Labeled fragments were splint-ligated using T4 RNA ligase 2, assisted by compli-

mentary DNA oligomers that bridged the fragments. Labeled and ligated riboswitches were gel

extracted and eluted, as described (Anthony et al., 2012), for the DNA hairpins.

Dye characterization
Base modifications and dye labeling do not interfere with opening force
and opening distance in DNA hairpins
For calibration and confirmation purposes, we conducted a preliminary optical trapping-smFRET

study using dye-modified versions of a DNA hairpin which has been extensively characterized,

15R50T4 (here, called SJ1) (Blakely, et al., 2014; Woodside et al., 2006). Opening force (F1/2) and

opening distance (Dx) values obtained during pulling experiments were compared to those obtained

at equilibrium under constant force (Figure 8A). The F1/2 and Dx values were also measured for SJ1

hairpins with internal amino-modified thymine base dye labeling sites (Integrated DNA Technolo-

gies), and ATTO550-ATTO647N dye-labeled hairpins. Comparisons of F1/2 and Dx values between

unmodified and amino-modified, but unlabeled, SJ1 hairpins confirmed that nucleotide modification

and fluorescent labeling have minimal effects on the measured mechanical properties. The minor dif-

ferences that were observed may be attributable to the fact that comparatively rapid force ramps

may slightly overstretch a DNA hairpin just prior to duplex opening, resulting in a small force over-

shoot, and consequent overestimation of the extension, as noted (Li et al., 2006; Liphardt et al.,

2001).

Previous studies have shown that fluorescent dye labels that get placed very close to neighboring

nucleotides can become quenched, especially near guanine (Di Fiori and Meller, 2010). To test this

observation, we designed DNA hairpin 20R25/4T (SJ2). On SJ2, amino-modified thymine labeling

sites were situated three nucleotides from either side of the base of the hairpin stem, and G:C base

pairs located near the base, and guanine residues in the adjacent single-stranded regions, were

replaced with adenine or thymine. Again, fluorescently-labeled and base-modified SJ2 hairpins
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reported F1/2 and Dx values comparable to those of base-modified and unlabeled SJ2 hairpins, con-

firming that base modification and fluorescent labeling did not perturb DNA hairpin structure nor

folding dynamics (Figure 8A).

FRET measurements agree with predicted FRET values
The FRET readout of the ATTO550-ATTO647N dye pair during non-equilibrium pulling experiments

of DNA hairpins was measured with an exposure time of 50 ms. For both SJ1 and SJ2, FRET

Figure 8. Dye characterization using DNA hairpins. (A) Opening distances (F1/2) and forces (Dx) of DNA hairpins SJ1 and SJ2 were measured at non-

equilibrium and compared to previous measurements at equilibrium. (B) FRET trajectories and FECs are shown. (C) k-means clustering for SJ1 and SJ2

FRET trajectories. Cluster means are indicated with filled diamonds. (D) Table summarizing opening force and FRET statistics, force ramp FRET

statistics, plus predicted FRET efficiency. (E) Donor and acceptor traces (top) in the presence of 20 and 30% TQ (left and right, respectively).

DOI: 10.7554/eLife.12362.013
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transitions from high to low FRET efficiency were temporally coincident with hairpin rupture events

(Figure 8B). FRET values recorded at the time of hairpin opening matched theoretical FRET effi-

ciency (E) calculated from the dipole-dipole coupling mechanism expression E ¼ 1=½1þ ðR=R0Þ
6�,

where R is the inter-dye distance and R0 is the Förster radius of the ATTO550-ATTO647N dye pair.

Opening FRET was plotted against opening force, and k-means clustering with k = 2 was applied to

identify the centroids of each hairpin cluster (Figure 8C). The clustering FRET mean for SJ1 (0.89)

was significantly lower than the predicted value (0.98) (Figure 8D). However, since SJ2 reports a

clustering FRET mean (0.86) consistent with predicted FRET (0.87), we believe that the FRET discrep-

ancy for SJ1 can be explained by dye interactions with pyrimidine nucleotides located at the base of

the hairpin. The RNA aptamer construct was designed accordingly to avoid such interactions.

Trolox
Trolox (TX), a soluble analog of vitamin E, has been shown to reduce triplet-state quenching and

blinking, especially when combined with Trolox-quinone (TQ) (Cordes et al., 2009; 2011). TX was

dissolved in DMSO to 100 mM and exposed to UV light, yielding 20–28% TQ in 3 mM TX. The TQ

concentration was determined by diluting UV-exposed TX to 3 mM in PHC buffer (50 mM HEPES pH

7.5, 130 mM KCl, 4 mM Mg2+, 1 mM EDTA) and measuring the absorbance at 255 nm, according

to:

½TQ� ¼
Ag=d� "gTX½TX�

0

"gTQ� "gTX

where g is the wavelength (255 nm), d is the distance (1 cm), and the extinction coefficients for TX

("gTX) and TQ ("gTQ) are 400 and 11,600 l�mol-1�cm-1, respectively. Lower percentages of TQ were

obtained by diluting TQ in 100 mM unexposed TX. A stock was stored at 4˚C, and was diluted to 3

mM in SCAV prior to experiments. DNA hairpins held under low load showed reduced blinking in

the presence of TQ (Figure 8E).

Simultaneous single-molecule Förster resonance energy transfer optical
trapping instrumentation and data collection
We incorporated fluorescence excitation and detection capabilities into an existing dual-beam opti-

cal trapping apparatus, as described (Greenleaf et al., 2008; Lang et al., 2002). Briefly, the setup

(schematic; Figure 2) is based on a Nikon TE2000 inverted light microscope (Nikon Instruments,

Melville, NY), and utilizes three lasers: one for optical trapping (10W; 1,064 nm; diode-pumped Nd:

YVO4 laser; Spectra-Physics Lasers, Mountain View, CA), one for position detection (20 mW; 830 nm;

single-mode diode laser; Qioptiq, Waltham, MA), and one for fluorescence excitation (1 W; 532 nm;

diode-pumped, frequency-doubled YAG; CrystaLaser, Reno, NV). Fluorescence emission was

detected by an electron-multiplying CCD (EMCCD) camera used for imaging (iXon 897;

Andor, United Kingdom). Fluorescence excitation light was coupled into, and focused through, the

microscope objective to a ~1 mm spot in the specimen plane, confocal with the fluorescently-labeled

RNA construct. Dichroic filters were installed upstream of the EMCCD to split the emission spectra

of the donor and acceptor fluorophores into spatially separate channels at the image plane; the

emission image was passed through a rectangular slit to allow simultaneous collection from both

acceptor and the donor fluorophores.

The fluorescence sub-image size was ~43 x 283 pixels (pixel size, 0.16 x 0.16 mm). Each region of

interest (ROI) subtended 7 x 10 pixels for both the donor and acceptor channels. The EMCCD out-

put counts for ATTO550 and -647N dyes were typically around 16,000 and 7,000 photons per sec-

ond, respectively. Successive frame exposure times were 50 ms, and about 800 frames were

collected per single-molecule record.

Dumbbell assay
Polystyrene beads, 0.6 and 0.8 mm in diameter, were functionalized with streptavidin and anti-digoxi-

genin and coupled to 1 kb and 2 kb DNA handles, respectively, via single-stranded overhangs, as

described (Anthony et al., 2012; Greenleaf et al., 2008). Handle lengths were chosen to provide

adequate spatial separation (approximately 1 mm) between the optical trapping beams and the fluo-

rophore-labeled constructs. Constructs for study (DNA hairpins or RNA aptamers) were first
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annealed to the handles, and then conjugated to beads by incubation for 1 hr at room temperature.

The bead incubation was diluted in oxygen-scavenging buffer (SCAV; 50 mM HEPES pH 7.5, 130

mM KCl, 4 mM Mg2+, 1 mM EDTA, 160 Units/ml glucose oxidase, 100 Units/ml catalase, 0.8% beta-

glucose, and 3 mM UV-treated Trolox (Sigma-Aldrich, Germany) with 10–14% Trolox-quinone). Both

glucose oxidase and catalase were further purified from manufacturer’s stocks by ultrafiltration. Sam-

ples were then introduced into flow cells for optical trapping experiments.

Data acquisition and analysis
FECs were obtained by servoing the steerable optical trap at a constant rate (~90 nm s-1; stiffness

0.25–0.3 pN nm-1) relative to the fixed trap, using an acousto-optic deflector. Opening forces and

extensions were measured by first identifying transitions in the FECs, then fitting the regions before

and after these to a double wormlike chain model (WLC), as described (Greenleaf et al., 2008). For

smFRET traces, correction factors for the leakage of donor emission into the acceptor channel (b)

and differences between the donor and acceptor in efficiency and quantum yield (g) were calculated

as described (McCann et al., 2010). The b value was calculated to be 0.13 for the ATTO550-

ATTO647N dye pair. The g corrections varied among traces, and were determined by subtracting

counts before and after the FRET transition for both donor and acceptor signals. After suitable b, g,

and background corrections, the FRET efficiencies were calculated from E = IA /(IA + ID).

k-means clustering for opening forces and FRET values was performed using Python libraries. The

clustering parameter, k, was varied from 2–4 with default settings (Figure 4—figure supplement 1),

with optimal results obtained for k = 3. FRET data were binned using a bin size of 0.025. The global

histogram of FRET data was fit to a sum of four Gaussians using a conventional nonlinear least-

squares algorithm.

Refolding FRET traces were concatenated and analyzed using the MSMBuilder HMM Python

package (Beauchamp et al., 2011). FRET values and inter-state transition times were calculated for

HMM states A, B and C using averaging. Transition rates were calculated from the reciprocals of the

directional transition times.
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